KAIST, 실내조명 활용해 최고 수준 이산화질소 감지 가능

배군득 2024. 6. 10. 08:59
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

우리나라 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사해 상온에서 최고 수준 이산화질소 감지 성능을 보이는 것을 확인했다.

이번 연구 연구책임자인 KAIST 신소재공학과 김일두 교수는 "자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹・청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다"며 "가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다"고 설명했다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

신소재공학과 김일두 교수 연구팀
한계였던 가시광 영역 산화물 활성 극복
기존 상온 센서 대비 52배 증가
녹색광, 청색광에서의 광활성 매커니즘과 다양한 가시광 조건에서의 이산화질소 감지 결과 및 모식도. ⓒKAIST

우리나라 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사해 상온에서 최고 수준 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다.

KAIST(총장 이광형)는 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다.

금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300℃ 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받았다. 그러나기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다.

김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 높였다. 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가했다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다.

연구진은 가시광선 흡수가 어려운 인듐 산화물(In2O3) 나노섬유에 비스무스(Bi) 원소를 첨가, 청색광을 흡수할 수 있도록 중간 밴드 갭을 형성시켰다.

금(Au) 나노입자를 추가적으로 결착해 국소 표면 플라즈몬 공명 현상으로 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다.

이번 연구 연구책임자인 KAIST 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹・청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”고 설명했다.

KAIST 신소재공학과 졸업생 박세연 박사(현 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐다. 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다.

한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA) 소재부품장비 전략협력기술개발사업 지원을 받아 수행됐다.

▶︎용어설명

인듐 산화물 나노섬유 = 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함.

비스무스(Bi) 원소 = 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소.

밴드 갭(Band gap) = 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나.

국소 표면 플라즈몬 공명(LSPR) = 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리.

Copyright © 데일리안. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?