UNIST, 지속가능한 ‘나노결정 양방향 광스위치’ 현상 발견

영남취재본부 황두열 2023. 6. 1. 00:02
음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

UNIST 화학과 서영덕 교수팀이 양자컴퓨팅 시대에 사용될 ‘3D 광양자 메모리’ 원천 기술인 지속가능한 ‘나노결정 양방향 광스위치’ 현상과 원리를 발견했다.

이번 성과는 세계적인 학술지 ‘네이처 (Nature, Impact Factor: 69.504)’에 5월 31일(영국 런던 현지 시각 오후 4시, 한국 시각 6월 1일 오전 0시) 자로 온라인에 공개됐다.

UNIST는 이번 연구로 광사태 나노입자(ANP)가 3D 광양자 메모리와 바이오·나노 프로브, 초 해상도 나노경 등의 분야에서 새로운 발전을 이끌 수 있다고 밝혔다.

연구팀은 2021년 1월 란탄족 금속이 도핑된 광사태 나노입자로부터 초미세 나노결정 내의 연쇄 증폭 반응으로 증폭된 아주 강한 빛을 내는 광사태 현상과 광사태 나노입자 물질을 발견해 네이처지의 표지논문으로 선정됐다.

당시 연구에 참여했던 이창환 컬럼비아대 박사 후 연구원은 광사태 나노입자로부터 극단적으로 증폭된 빛을 내도록 하는 연쇄 반응을 유도했다.

지난 연구에 이어 이번 응용 연구에서는 광사태 나노결정들이 새로운 특징과 응용처를 가지고 있다는 것을 확인했다. 즉 인위적·무한적으로 반복 점멸되도록 제어할 수 있는 광스위치 현상과 그 현상의 ‘3D 광양자 메모리’의 응용에 대한 발견이다.

유기 염료와 형광 단백질은 광학 메모리, 나노 패턴화·생체 이미지화와 같은 다양한 응용 분야에 널리 사용됐다.

하지만 이러한 형광 분자들은 빛을 받으면 무작위로 깜박이고 결국에는 완전히 탈색돼 사라져 버리는 경향 때문에 수명이 짧다는 치명적인 단점을 가진다. 이러한 과정을 ‘광탈색(Photobleaching)’ 현상이라고 일컫는다.

다양한 나노패턴의 반복적 쓰기지우기 실험 결과(왼쪽), 나노결정 광스위치 구현을 위한 초해상도 나노이미징.

이러한 형광 분자들의 광탈색 현상과는 달리 란탄족 금속들이 도핑된 나노입자는 예외적인 광안정성을 보였다.

연구팀은 오늘 네이처지에 발표된 ‘지속가능한 양방향 근접장 나노결정 광스위치 (Indefinite and bidirectional near-infrared nanocrystal photoswitching)’ 논문에서 이러한 광안정성의 목표를 성공적으로 달성했다.

근적외선 사용으로 열변성의 징후를 보이지 않으면서 다양한 주변 환경과 물 환경에서도 나노결정의 점등과 소등에 대한 테스트를 수천 번 이상 반복할 수 있었다.

이창환 컬럼비아대 박사 후 연구원은 “우리는 간단한 소형 레이저를 사용해 빛의 파장 하나로 빛을 컨트롤하고 다른 파장으로 빛을 전환할 수도 있다”며 “근적외선 빛은 광독성이나 광산란을 최소화하면서도 생물학적 조직과 무기화학적 물질 등 모두 물질에 대해 깊이 침투할 수 있다는 점에 주목할 필요가 있다”고 말했다.

또 연구팀은 잠재적 응용 분야와 관련해 입자가 3D 기판에 나노 패턴을 반복적으로 썼다가 지웠다 하는 반복 패턴이 어떻게 활용될 수 있는지 실험으로 확인했다.

서영덕 화학과 교수는 “이러한 무한 반복 가능한 양방향 광스위치는 향후 초고성능 양자 컴퓨터에서 생성된 방대한 양의 데이터를 저장하기 위한 광양자 메모리 장치로 발전될 것이다”며 “거대한 데이터 저장 용량을 가지면서도 훨씬 더 빠르고, 정확하고, 정밀하게 작동될 수 있을 것이다”고 설명했다.

UNIST 서영덕 교수.

연구팀은 현재까지 연구에서 관찰된 광스위치 현상의 근원을 첨단 투과전자현미경(TEM)으로도 시각화할 수 없는 정도의 매우 작은 ‘원자 결정 결함 (Atomic Crystal Defect)’ 때문으로 보고 있다.

이러한 원자 결정의 결함으로 광사태 나노결정의 광사태 임계 값을 더 높거나 낮게 이동시키고, 다른 빛 파장을 사용해 신호 밝기를 증가시키거나 감소시킬 수 있다.

연구팀은 광양자 메모리, 초해상도 나노경, 바이오·나노 이미징, 바이오 센서 분야에서 잠재적인 응용 분야에 대해 연구하고 있다.

그 외에도 머신러닝, 계산모델과 함께 버클리 연구소의 Molecular Foundry에서 ‘나노입자 합성 로봇’을 사용해 이러한 결정들의 특성들을 더욱 향상시킬 계획을 갖고 있다.

또 비슷한 광전환 특성을 나타내는 다른 나노입자들을 만들 수 있는지를 탐색하는 것도 향후 후속 연구의 목표이다.

이번 연구는 과학기술정보통신부 한국연구재단의 글로벌연구실 사업, UNIST 연구정착금 과제, 기초과학연구원 다차원탄소재료연구단 과제 등의 지원으로 이뤄졌다.

영남취재본부 황두열 기자 bsb03296@asiae.co.kr

Copyright © 아시아경제. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?