KAIST, 비싼 인프라 없이 AI 학습 가속화하는 기술 개발
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.
국내 연구진이 고가의 데이터센터급 GPU나 고속 네트워크 없이 인공지능(AI) 모델을 효율적으로 학습할 수 있는 기술을 선보였다.
한국과학기술원(KAIST)은 한동수 전기전자공학부 교수 연구팀이 일반 소비자용 그래픽 처리 장치(GPU)를 활용해 네트워크 대역폭이 제한된 분산 환경에서도 AI 모델 학습을 수십에서 수백 배 가속할 수 있는 기술을 개발했다고 19일 밝혔다.
이 글자크기로 변경됩니다.
(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.
[이데일리 강민구 기자] 국내 연구진이 고가의 데이터센터급 GPU나 고속 네트워크 없이 인공지능(AI) 모델을 효율적으로 학습할 수 있는 기술을 선보였다.
한국과학기술원(KAIST)은 한동수 전기전자공학부 교수 연구팀이 일반 소비자용 그래픽 처리 장치(GPU)를 활용해 네트워크 대역폭이 제한된 분산 환경에서도 AI 모델 학습을 수십에서 수백 배 가속할 수 있는 기술을 개발했다고 19일 밝혔다.
연구팀은 이러한 문제를 해결하기 위해 ‘스텔라트레인(StellaTrain)’이라는 분산 학습 프레임워크를 개발했다. 이 기술은 고성능 H100에 비해 10~20배 저렴한 소비자용 GPU를 활용했다. 이를 통해 고속의 전용 네트워크 대신 대역폭이 수백에서 수천 배 낮은 일반 인터넷 환경에서도 효율적인 분산 학습을 가능하게 한다.
기존 저가 GPU를 사용하면 작은 GPU 메모리와 네트워크 속도 제한으로 인해 대규모 AI 모델 학습 시 속도가 수백 배 느려졌다. 연구팀이 개발한 스텔라트레인 기술은 CPU와 GPU를 병렬로 활용해 학습 속도를 높이고, 네트워크 속도에 맞춰 데이터를 효율적으로 압축·전송하는 알고리즘을 적용해 고속 네트워크 없이도 여러 대의 저가 GPU를 이용해 빠른 학습을 가능하게 했다.
특히, 학습을 작업 단계별로 CPU와 GPU가 나눠 병렬 처리할 수 있는 새로운 파이프라인 기술을 도입해 연산 자원의 효율을 극대화했다. 원거리 분산 환경에서도 GPU 연산 효율을 높이기 위해 AI 모델별 GPU 활용률을 실시간으로 모니터링해 모델이 학습하는 샘플의 개수를 동적으로 결정하고, 변화하는 네트워크 대역폭에 맞춰 GPU 간 데이터 전송을 효율화하는 기술을 개발했다.
연구 결과, 스텔라트레인 기술을 사용하면 기존 데이터 병렬 학습에 비해 최대 104배 빠른 성능을 낼 수 있는 것으로 나타났다.
한동수 교수는 “대규모 AI 모델 학습을 누구나 쉽게 접근하게 하는 데 기여하겠다”며 “앞으로도 저비용 환경에서도 대규모 AI 모델을 학습할 수 있는 기술 개발을 계속할 계획”이라고 말했다.
연구는 KAIST의 임휘준 박사, 예준철 박사과정 학생, UC 어바인의 산기타 압두 조시 교수가 수행했다. 연구 결과는 지난 달 호주 시드니에서 열린 ‘ACM SIGCOMM 2024’에서 발표됐다.
강민구 (science1@edaily.co.kr)
Copyright © 이데일리. 무단전재 및 재배포 금지.
- 영화 '공공의적' 모티브된 최악의 존속살해[그해 오늘]
- ‘4분의 기적’ 버스서 심정지로 고꾸라진 男, 대학생들이 살렸다
- "술만 마시면 돌변..폭력 남편 피해 아이들과 도망친 게 범죄인가요"
- "임영웅과 얘기하는 꿈꿔...20억 복권 당첨으로 고민 해결"
- '공룡 美남' 돌아온 김우빈, 황금비율 시계는[누구템]
- 경찰, 오늘 '마약 투약 혐의' 유아인에 구속영장 신청
- 2차전지 미련 못 버리는 개미군단 '포퓨'로 진격…포스코그룹株 주가는 글쎄
- '최고 158km' 안우진, 6이닝 2실점 역투...키움, 3연패 탈출
- "보증금, 집주인 아닌 제3기관에 묶는다고"…뿔난 임대인들
- 상간소송 당하자 "성관계 영상 유포하겠다" 협박한 20대 여성[사랑과전쟁]