수학공부 ‘무쓸모’ 아니었네…잃어버린 이어폰 10분 만에 ‘발견’

박동민 기자 2024. 5. 2. 16:20
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

블루투스 이어폰 한쪽을 잃어버린 대학생이 수학 공식으로 이어폰을 찾아 화제가 되고 있다.

최근 일본 매체 '라이브도어 뉴스' 등은 도쿄대 1학년 A씨는 '삼각형 외심' 공식으로 잃어버린 블루투스 이어폰을 찾은 사연을 전했다.

A씨는 최근 캠퍼스를 걷던 중 블루투스 이어폰 한쪽을 분실했다.

하지만 이어폰을 잃어버린 줄 모르고 있었던 A씨는 어디서 이어폰이 없어졌는지 알 길이 없었다.

음성재생 설정 이동 통신망에서 음성 재생 시 데이터 요금이 발생할 수 있습니다. 글자 수 10,000자 초과 시 일부만 음성으로 제공합니다.
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

일본 도쿄대 학생, ‘삼각형 외심 공식’으로 위치 찾아내
A씨가 삼각형의 외심 공식으로 찾은 이어폰. 일본 라이브도어 뉴스

블루투스 이어폰 한쪽을 잃어버린 대학생이 수학 공식으로 이어폰을 찾아 화제가 되고 있다.

최근 일본 매체 ‘라이브도어 뉴스’ 등은 도쿄대 1학년 A씨는 ‘삼각형 외심’ 공식으로 잃어버린 블루투스 이어폰을 찾은 사연을 전했다.

A씨는 최근 캠퍼스를 걷던 중 블루투스 이어폰 한쪽을 분실했다. 하지만 이어폰을 잃어버린 줄 모르고 있었던 A씨는 어디서 이어폰이 없어졌는지 알 길이 없었다. 하지만 문득 고등학교 때 배운 ‘삼각형의 외심’이 떠올랐다고 한다.

‘삼각형의 외심’ 공식은 삼각형을 이루고 있는 세 변의 수직 이등분선이 만나는 점인 ‘외심’에서 삼각형의 세 꼭짓점까지의 길이가 같다는 공식이다.

삼각형의 외접원(원 모양)과 외심(삼각형 중간의 점). 위키백과

A씨는 “핸드폰의 블루투스 기능을 켜고 걸어왔던 길을 다시 걸었다”며 “걷다 보니 블루투스가 다시 연결됐다”고 했다. 그러면서 “블루투스 전파가 원이라고 생각하고 전파가 끊어졌다가 다시 연결되는 3개의 지점을 찾아 삼각형을 그리고 외심을 찾았다”고 설명했다.

A씨는 이어폰을 찾아 나선 지 단 10분 만에 잃어버린 이어폰을 찾았다. 그는 “눈으로 찾는 것보다 점을 찍어 어림잡는 게 더 빠르다”고 강조했다.

또 “평소 수학은 일상생활에 도움이 되지 않는다고 여기는 경우가 많지만 간단한 계산에도 다양한 사례를 적용할 수 있다”며 “단지 그것을 눈치채느냐 아니냐의 차이기 때문에 수학을 배운다고 생각한다”고 덧붙였다.

한편 A씨는 중학교 3학년 때 구입한 수학 잡지를 읽고 수학의 매력에 빠져 취미로 수학 문제를 풀 만큼 수학에 심취한 학생으로 알려졌다.

Copyright © 농민신문. 무단전재 및 재배포 금지.