“내 리튬배터리 성능 얼마나 떨어졌을까?” 분해없이도 쉽게 진단한다

2023. 11. 8. 13:54
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

다 써버린 배터리의 건강상태를 진단하고 재활용 여부를 쉽게 판단할 수 있는 기술이 개발됐다.

임동준 에너지화학공학과 석박사통합과정연구원은 "배터리 재활용 분야뿐 아니라 실생활에서도 배터리 팩 진단을 통해 내부 모듈의 건강 상태를 예측할 수 있다"며 "성능이 저하된 모듈만 교체할 수 있어 향후 다양한 분야에서 그린에너지를 실현에 도움이 될 것으로 기대된다"고 전했다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

- UNIST 공동 연구팀, 다양한 배터리에 적용 가능
원스톱 배터리 재사용성 검증 기술 모식도.[UNIST 제공]

[헤럴드경제=구본혁 기자] 다 써버린 배터리의 건강상태를 진단하고 재활용 여부를 쉽게 판단할 수 있는 기술이 개발됐다. 기기 종류에 제한받지 않고 진단 가능해 배터리 건전성 관리 분야에 큰 영향을 미칠 것으로 기대된다.

울산과학기술원(UNIST) 에너지화학공학과 김동혁, 최윤석 교수 및 탄소중립대학원 임한권 교수팀은 컴퓨터가 독립적으로 훈련하는 딥러닝을 기반으로 배터리 부품의 건강 상태를 진단할 수 있는 시스템 딥슈가(DeepSUGAR)를 개발했다. 학습을 통해 새로운 창작물을 만드는 생성형 인공지능 기술 ‘생성형 대립 신경망(GAN)’과 효과적으로 이미지 처리할 수 있는 ‘합성곱 신경망(CNN)’을 결합했다.

딥슈가는 리튬 배터리를 충·방전 시킬 때 얻은 전압, 전류, 용량 데이터를 빛의 삼원색 값으로 변환해 이미지화한다. 이를 기반으로 딥러닝 모델을 활용해 배터리의 건강 상태를 예측한다. 모듈, 팩 등 배터리 구성에 상관없이 적용 가능해 기존 배터리 진단 방법과 차별화된다.

김동혁 교수는 “충·방전 데이터를 이미지화하는 딥슈가의 특징을 활용해 배터리를 분해하지 않고도 사용된 배터리의 재활용 여부를 판단할 수 있는 검증 시스템을 구축했다”고 설명했다.

이번 연구를 수행한 UNIST 연구진. 임한권(윗줄 왼쪽부터) 교수, 김동혁 교수, 최윤석 교수.[UNIST 제공]

연구팀이 구축한 시스템은 생성형 AI를 이용해 배터리의 건강 상태를 바탕으로 배터리 부품인 모듈의 충·방전 데이터까지 뽑아낼 수 있다. 배터리를 분해하거나 실제 충·방전 테스트 없이도 내부 모듈의 재활용 여부를 판단할 수 있는 것이다.

임동준 에너지화학공학과 석박사통합과정연구원은 “배터리 재활용 분야뿐 아니라 실생활에서도 배터리 팩 진단을 통해 내부 모듈의 건강 상태를 예측할 수 있다”며 “성능이 저하된 모듈만 교체할 수 있어 향후 다양한 분야에서 그린에너지를 실현에 도움이 될 것으로 기대된다”고 전했다.

이번 연구결과는 국제학술지 ’재료화학 A’에 11월호 표지논문(Back Cover)으로 선정됐다.

nbgkoo@heraldcorp.com

Copyright © 헤럴드경제. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?