혼잡한 출퇴근 지하철 걱정마세요…'AI 실시간 분석'으로 안전대응

윤홍집 2023. 11. 2. 18:21
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

정부가 지하철역 승강장의 혼잡상황을 실시간으로 파악할 수 있는 인공지능(AI) 기반 데이터 분석모델을 이달부터 현장에 시범 적용한다.

행정안전부 통합데이터분석센터는 지난 6월부터 서울지하철과 김포 골드라인을 샘플로 진행해온 'AI 기반 지하철 승강장 혼잡도 예측 모델' 개발을 마치고 서울지하철에 시범적용한다고 2일 밝혔다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

정확도 90%… 서울지하철 시범적용
서울 중구 지하철 1호선 서울역 승강장 모습 뉴스1
정부가 지하철역 승강장의 혼잡상황을 실시간으로 파악할 수 있는 인공지능(AI) 기반 데이터 분석모델을 이달부터 현장에 시범 적용한다.

행정안전부 통합데이터분석센터는 지난 6월부터 서울지하철과 김포 골드라인을 샘플로 진행해온 'AI 기반 지하철 승강장 혼잡도 예측 모델' 개발을 마치고 서울지하철에 시범적용한다고 2일 밝혔다.

이번에 개발된 모델은 AI가 산출한 지하철 승강장의 체류인원을 토대로 승강장 면적을 고려한 밀도와 혼잡률을 산출한 뒤, 그 수준을 1단계부터 4단계까지로 구분해 표출하는 개념이다. 모델개발과정에는 통합데이터분석센터와 서울교통공사, 김포 골드라인이 함께 참여했으며, 지하철 승하차 태그 데이터, 교통카드 정산 데이터, 열차 출도착 데이터 등 800만 건의 데이터가 활용됐다.

혼잡률은 철도안전관리체계 기술기준에 따라 면적(m2)당 4.3명을 기준(100%)으로 인원 초과 비율에 따라 산출된다.

2차례의 성능검증 결과 분석모델의 정확도는 90.1%로 확인됐다.

개발된 모델은 현재 서울교통공사 전자관제실 대시보드에 반영됐다. 공사는 본 모델을 통해 표출되는 2개 역의 혼잡도 수준을 실시간으로 모니터링하고 있다.

공사는 이번 모델의 개발, 적용과 함께 혼잡상황 대응체계도 새로 정비했다. 예상치 못한 인파급증 상황이 인지되면, 별도로 마련한 혼잡도 관리 매뉴얼에 따라 자동 상황전파 및 현장조치가 이뤄지게 된다.

행안부와 서울교통공사는 이번 분석모델 활용이 지하철 역사 내 혼잡상황에 대한 효과적 대응에 도움을 줄 것으로 보고 있다.

행안부는 연내 시범운영 과정을 거쳐 향후 지하철역 승강장 혼잡도 산출모델을 표준화하고 수도권 및 전국 4개 도시(부산, 대구, 광주, 대전)의 지하철역에도 확산시켜 나갈 계획이다.

Copyright © 파이낸셜뉴스. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?