베르티스, 표적단백체 분석 소프트웨어 연구 국제학술지 게재

박인혁 2023. 7. 12. 11:03
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

베르티스는 표적단백체 분석 소프트웨어인 'DeepMRM'의 성능을 평가한 연구 결과를 국제 학술지 '셀 리포트 메소드(Cell Reports Methods)'에 게재했다고 12일 밝혔다.

DeepMRM은 특정 단백질 후보물질을 찾기 위한 분석법인 다중반응탐색법(Multiple Reaction Monitoring, MRM)의 정확도를 높이기 위한 소프트웨어다.

베르티스에 따르면 기존의 MRM 분석 소프트웨어는 분석 과정에서 수작업이 필요하다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

자체개발 ‘DeepMRM’ 성능 비교 연구
기존 소프트웨어 대비 정확도↑
DeepMRM을 활용해 특정 단백체를 분석하는 과정의 모식도. 자료 제공=베르티스

베르티스는 표적단백체 분석 소프트웨어인 ‘DeepMRM’의 성능을 평가한 연구 결과를 국제 학술지 ‘셀 리포트 메소드(Cell Reports Methods)’에 게재했다고 12일 밝혔다.

DeepMRM은 특정 단백질 후보물질을 찾기 위한 분석법인 다중반응탐색법(Multiple Reaction Monitoring, MRM)의 정확도를 높이기 위한 소프트웨어다. 

베르티스에 따르면 기존의 MRM 분석 소프트웨어는 분석 과정에서 수작업이 필요하다. 이에 많은 인력과 시간이 소요되고 인적 오류 때문에 일관되지 않은 분석 결과를 초래할 수 있다. DeepMRM은 딥러닝을 활용해 이러한 문제점의 개선을 목표한다.

베르티스 머신러닝팀과 미국 자회사인 베르티스바이오사이언스는 공개된 MRM 데이터를 활용해 가장 널리 사용되는 소프트웨어 ‘스카이라인’와 ‘DeepMRM’의 성능을 비교했다. 

그 결과 DeepMRM은 스카이라인 대비 단백체의 정량값과 실제값의 상관관계(correlation coefficients)는 높고 평균 오류값을 측정하는 ‘MAAPE’ 평가 지표는 낮게 나타났다. 스카이라인의 결과를 더 정교하게 만드는 추가 알고리즘 ‘mProphet’을 적용한 결과보다도 DeepMRM 결과가 더 정확도가 높았다. 

박정갑 베르티스 머신러닝팀 이사는 “DeepMRM은 다중마커진단 솔루션에서 데이터 처리량을 획기적으로 늘릴 수 있는 분석도구”라며 “향후 진단과 치료, 신약후보물질 발굴이 모두 가능한 플랫폼을 구현하기 위해 인공지능(AI)을 적용한 분석도구 개발을 지속할 것”이라고 말했다.

박인혁 기자 hyuk@hankyung.com

클래식과 미술의 모든 것 '아르떼'에서 확인하세요
한국경제신문과 WSJ, 모바일한경으로 보세요

Copyright © 한국경제. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?