“1년 걸리던 수소연료전지 안정성 평가” AI가 70초만에 끝낸다

2023. 6. 14. 12:02
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

수소자동차에 주로 사용되는 양성자 교환막 연료전지(PEMFC)에는 백금 촉매가 주로 사용된다.

촉매의 성능은 연료전지의 수명과 직결되기 때문에 백금 촉매의 성능, 특히 안정성을 높이는 연구가 필수적이다.

한상수 박사는 "백금뿐만 아니라 다양한 금속 및 합금 나노입자의 안정성을 예측하는데 BE-CGCNN 모델을 적용할 수 있어 긴 수명을 가지는 신소재 촉매 개발에도 활용이 가능할 것"이라고 말했다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

- KIST-KAIST, 새 AI 모델 개발
실제 크기 나노입자의 표면 푸베이 도표 예측 및 DFT와의 계산시간 비교.[KIST 제공]

[헤럴드경제=구본혁 기자] 수소자동차에 주로 사용되는 양성자 교환막 연료전지(PEMFC)에는 백금 촉매가 주로 사용된다. 촉매의 성능은 연료전지의 수명과 직결되기 때문에 백금 촉매의 성능, 특히 안정성을 높이는 연구가 필수적이다. ‘표면 푸베이 도표’를 이용하면 실제 작동환경에서 촉매 물질의 표면 구조와 안정성을 예측할 수 있다. 표면 푸베이 도표는 밀도범함수이론(DFT)을 이용한 흡착에너지 시뮬레이션 계산으로 구할 수 있지만, 수 나노미터 크기의 나노입자 구조를 가진 백금 촉매의 경우 수천 시간이 소요된다.

한국과학기술연구원(KIST)은 계산과학연구센터 한상수 박사, 김동훈 박사와 KAIST 신소재공학과 이혁모 교수 공동연구팀이 수 나노미터 크기의 백금 나노입자에 대해서 표면 푸베이 도표를 빠르고 정확하게 구성할 수 있는 새로운 AI 기술을 개발했다고 밝혔다.

공동연구팀은 촉매 표면에서 흡착 물질이 결합하는 에너지를 정확하게 예측하기 위해 결합 임베딩-결정 그래프 합성곱 신경망(BE-CGCNN) 모델을 개발했다. 이 모델은 기존의 결정 그래프 합성곱 신경망(CGCNN) BE-CGCNN 모델을 이용하면 백금 나노입자의 표면에 존재하는 흡착물의 흡착 에너지를 밀도범함수이론에 따른 계산 대비 0.1 eV 전자볼트(electronvolt, eV) 오차 수준으로 예측해 표면 푸베이 도표를 정확하게 구성할 수 있다. 기존 CGCNN 모델과 비교해서는 최대 85.7%만큼 오차가 감소했다. 실제 PEMFC에 사용되는 약 5nm 크기의 백금 나노입자에 대해서 표면 푸베이 도표를 계산하는 데 걸린 시간은 불과 약 70초였다. 기존 밀도범함수이론을 사용하면 1년 이상의 시간이 걸리던 계산이다.

한상수 박사는 “백금뿐만 아니라 다양한 금속 및 합금 나노입자의 안정성을 예측하는데 BE-CGCNN 모델을 적용할 수 있어 긴 수명을 가지는 신소재 촉매 개발에도 활용이 가능할 것”이라고 말했다.

김동훈 박사는 “향후 이 기술을 활용해 높은 안정성을 보유한 신소재 나노입자 촉매를 개발하면 연료전지의 수명이 획기적으로 연장된다”며 “백금 이외의 다양한 소재에 적용할 수 있도록 모델 학습용 데이터를 확보하고, 딥러닝 모델을 확장할 예정”이라고 말했다.

삼성미래기술육성사업으로 수행된 이번 연구성과는 국제학술지 ‘네이처 커뮤니케이션즈’ 5월 25일 온라인 게재됐다.

nbgkoo@heraldcorp.com

Copyright © 헤럴드경제. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?