KAIST, 신생항원 찾는 AI 구축…개인 맞춤 암 백신개발 속도

2023. 5. 17. 09:36
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다.

카이스트(KAIST)는 바이오및뇌공학과 최정균(사진) 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

- 바이오및뇌공학과 최정균 교수팀, 항암 면역반응 유발 신생항원 발굴 AI 개발
최정균 KAIST 바이오및뇌공학과 교수.[KAIST 제공]

[헤럴드경제=구본혁 기자] 신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 코로나19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이 같은 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 국내 연구진에 의해 개발됐다.

카이스트(KAIST)는 바이오및뇌공학과 최정균(사진) 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다.

연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 딥네오(DeepNeo)라는 이름으로 공개했다.

기존 신생항원 발굴 방법은 면역반응을 활성화시키는 MHC 단백질과 결합할 수 있는 돌연변이를 예측하는 데에 한정돼 있었다. 하지만 암 백신이 효과가 있으려면 돌연변이가 MHC와 결합할 뿐만 아니라 그 결합체가 실제로 T 세포 면역반응을 유발할 수 있어야 하는데, 기존 기술로는 불가능했다. 현재 암 백신 임상시험들은 이 결합체들이 실제로 면역반응을 자극할 수 있는지를 알 수 없는 상태로 진행되고 있다.

딥네오 웹페이지.[KAIST 제공]

연구팀은 이러한 문제를 해결하기 위해 새로운 개념의 딥러닝 모델을 구축, 여러 빅데이터 분석을 통하여 면역성 및 항암 반응성이 뛰어난 신생항원을 발굴할 수 있음을 확인했다. 따라서 이번에 웹서비스 형태로 구축한 방법론은T 세포 반응을 효과적으로 유도할 수 있는 항암 백신 개발에 활용될 수 있다.

이번 연구결과는 국제학술지 ‘네이처 지네틱스’와 ‘핵산연구’에 각각 게재됐다.

최정균 교수는 “코로나 백신에서 mRNA 플랫폼이 검증된 만큼 이번에 개발된 AI 기술이 암 백신의 상용화에도 도움이 되기를 희망한다”고 밝혔다.

조대연 ㈜펜타메딕스 대표는 “이번 공동연구를 통해 개발된 플랫폼을 적용한 개인맞춤형 암 백신의 사업화에 박차를 가하겠다”고 전했다.

nbgkoo@heraldcorp.com

Copyright © 헤럴드경제. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?