“한번 충전으로 800km 주행” ‘고성능 리튬배터리’ 나온다

2023. 1. 9. 10:05
음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

- 지스트 엄광섭 교수팀, 양극재로 고용량 바나듐 산화물 사용
- 에너지용량 50%↑ 리튬배터리 구현
전기자동차 충전 모습.[123RF]

[헤럴드경제=구본혁 기자] 1회 충전으로 전기차 주행거리를 약 1.5배 늘릴 수 있는 신개념 배터리 기술이 국내연구진에 의해 개발됐다.

광주과학기술원(지스트) 신소재공학부 엄광섭 교수 연구팀은 고용량 바나듐 산화물을 리튬 배터리의 양극재로 사용해 에너지 저장 용량이 기존 대비 약 50% 증가한 고성능 리튬 금속 배터리를 구현했다.

전기자동차에 사용되는 ‘리튬 배터리’는 기존의 흑연 음극을 리튬 금속 음극으로 대체한 배터리로, 가벼우면서도 리튬 금속 음극의 용량이 크고 산화 환원 전위가 낮아 차세대 배터리로 각광받고 있다.

현재 많은 연구에서 리튬 배터리의 양극 소재로 코발트(Co), 니켈(Ni), 망간(Mn), 철(Fe)의 산화물을 사용하고 있으나, 이러한 기존 양극 소재의 용량 증대는 이미 한계에 도달했다고 평가되기 때문에 전기차 1회 충전 시 주행거리를 늘리기 위한 리튬 배터리의 에너지 향상에 한계가 있는 상황이다.

고에너지 리튬 배터리를 구현하기 위해서 고용량의 새로운 양극 소재의 개발이 필요하며, 상용화를 위해 두꺼운 전극에서도 양극 소재의 성능이 유지되도록 해야 한다.

엄광섭 교수 연구팀은 리튬이 존재하지 않는 리튬-프리 소재인 바나듐 산화물을 양극 소재로 사용해 바나듐 산화물을 활용한 기존 배터리 대비 약 1.5배 증가된 용량을 갖는 리튬 배터리를 개발했다.

엄광섭(오른쪽) 교수와 심기연 박사과정생.[지스트 제공]

바나듐 산화물 양극 소재는 이론 용량이 294mAh/g에 달해 그 값이 기존 전이 금속 산화물 양극 소재(140mA/g~200mA/g) 대비 약 1.5~2배 이상 높지만, 배터리의 충·방전 과정 동안 구조가 붕괴될 수 있어 안정성 낮고 이온·전자 전도성이 낮아 느린 전기화학적 반응 속도를 가졌다는 치명적인 단점이 있어 상용화되지 못하고 있다.

이를 해결하기 위해 연구팀은 기존의 수열합성법에 결정 성장 억제제를 첨가하고 이후 열처리를 진행하는 새로운 합성법을 이용하여 나노플레이트가 적층된 계층 나노구조의 바나듐 산화물 양극 소재를 개발했다.

개발된 바나듐 산화물 소재는 구조 내부의 빠른 리튬이온 이동 통로를 효과적으로 제공하고, 리튬이온 이동 거리를 감소시켜 빠른 충·방전 전류 조건에서도 높은 용량 확보가 가능하다. 뿐만 아니라 견고한 계층 나노구조는 충·방전 과정 동안 안정적으로 구조를 유지하게 해준다.

개발한 양극 소재는 기존의 1차원 나노구조 바나듐 산화물 대비 1.5~2배 이상의 증가된 에너지 저장 용량을 나타냈다. 또한, 보통 빠른 충·방전 전류 조건에서는 큰 저항이 생성되어 용량이 급속하게 감소하는 반면, 개발된 양극 소재는 소재 내부 리튬이온의 확산거리 감소 및 확산속도 증가 덕분에 빠른 충·방전 속도에서도 저장 용량의 감소가 더 적었다.

이번 연구결과가 게재된 국제학술지 '스몰' 1월 4일 표지.[지스트 제공]

개발된 양극 소재로 제작한 리튬 배터리는 100회의 충·방전 이후에도 약 80%에 달하는 용량 유지율을 확인했으며, 대부분의 기존 나노벨트 구조의 바나듐 산화물의 용량 유지율(평균 60% 이하)과 비교해 매우 우수한 성능을 유지했다.

연구팀은 개발된 양극 소재와 리튬 금속 음극을 완전셀로 구성해 고성능 리튬 배터리를 구현하는 데 성공했다. 이 배터리는 두께가 증가된 전극에서도 양극 소재의 독특한 구조 덕분에 성능을 유지할 수 있었으며, 양쪽 전극 무게 기준으로 592 Wh/kg의 높은 무게당 밀도를 보였다.

이는 기존 리튬이온전지 대비 전극 기준 50%(1.5배) 향상된 결과다. 따라서 향후 전해질 및 전지 패킹 소재의 최적화를 통해 기존 리튬이온전지의 최고 셀 기준 비에너지(무게당 에너지) 수준인 280 Wh/kg의 140~150%인 약 400 Wh/kg 이상 발휘할 수 있을 것으로 기대된다.

엄광섭 교수는 “이번 연구 성과는 차세대 고에너지 리튬 금속 배터리 개발에서 고용량 리튬-프리 양극 소재의 중요성과 양극 소재 나노 구조화를 통한 전기화학 반응속도 성능 확보에 대한 새로운 가능성을 제시 할 것으로 기대된다”고 말했다.

이번 연구결과는 재료분야 국제학술지 ‘스몰(Small)’ 1월 4일 전면 표지논문으로 선정됐다.

nbgkoo@heraldcorp.com

Copyright © 헤럴드경제. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?