DGIST, 가상세계를 현실처럼 영상처리 딥러닝 기술 개발

나호용 2022. 10. 26. 11:06
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

DGIST(대구경북과학기술원)는 전기전자컴퓨터공학과 진경환 교수 연구팀이 기존 대비 메모리 속도는 절감되고, 해상력은 3dB 증가한 영상처리 딥러닝 기술을 개발했다고 26일 밝혔다.

삼성리서치 최광표 마스터와 공동연구로 개발한 이번 기술은 기존의 신호처리 기반의 이미지 보간 기술(Bicubic interpolation)보다 화면의 엘리어싱 현상을 줄여 보다 자연스럽게 영상이 출력될 수 있다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

기사내용 요약
진경환 교수 연구팀, 기존 대비 해상력 3dB 높은 알고리즘 개발

DGIST 전기전자컴퓨터공학과 진경환 교수(왼쪽)와 정보통신융합연구소 이재원 연구원. *재판매 및 DB 금지


[대구=뉴시스] 나호용 기자 = DGIST(대구경북과학기술원)는 전기전자컴퓨터공학과 진경환 교수 연구팀이 기존 대비 메모리 속도는 절감되고, 해상력은 3dB 증가한 영상처리 딥러닝 기술을 개발했다고 26일 밝혔다.

삼성리서치 최광표 마스터와 공동연구로 개발한 이번 기술은 기존의 신호처리 기반의 이미지 보간 기술(Bicubic interpolation)보다 화면의 엘리어싱 현상을 줄여 보다 자연스럽게 영상이 출력될 수 있다. 특히 이미지의 고주파 부분을 뚜렷하게 복원할 수 있다. 이를 통해 VR 또는 AR 활용 시 자연스러운 화면을 출력할 수 있을 것으로 기대된다.

신호처리 기반의 이미지 보간 기술(Bicubic interpolation)은 이미지의 특정 위치를 지정해 다양한 환경에서 원하는 이미지 영상을 보전해주는 기술이다. 메모리와 속도가 절감된다는 장점이 있지만, 화질열화 현상이 발생해 이미지가 변형되는 문제가 발생하게 된다.

이러한 문제를 해결하기 위해 딥러닝 기반의 초고해상도 영상 이미지 변환 기술들이 등장했지만, 대부분 합성곱 인공지능망기반 기술로, 픽셀과 픽셀 사이의 값들 추정이 부정확해 이미지가 변형된다는 단점이 있다.

이러한 단점을 극복하고자 함축 표현 신경망 기술이 주목받고 있지만, 함축 표현 신경망 기술은 고주파 성분을 잡아내지 못하고 메모리와 속도 역시 증가한다는 단점을 가지고 있다.

이에 DGIST 진경환 교수 연구팀은 이미지에서 고주파 성분 특징을 표현할 수 있도록 이미지를 여러 주파수로 분해하고, 함축 표현 신경망 기술을 통해 분해된 주파수에 다시 좌표를 부여해 보다 선명하게 보일 수 있도록 이미지화하는 기술을 개발했다.

해당 기술은 이미지 딥러닝 기술인 퓨리에 해석과 함축 표현 신경망 기술이 결합된 새로운 기술이라고 볼 수 있다. 새롭게 구현된 기술은 이미지를 복원하는 데 있어서 필수적인 주파수 성분들을 인공지능망을 통해 분해해 고주파 성분을 복원하지 못한다는 함축 표현 신경망의 단점을 보완할 수 있었다.

진경환 교수는 “이번에 개발한 기술은 기존 이미지 워핑 분야에서 활용한 기술보다 복원 성능이 높고, 메모리를 적게 소모한다는 점에서 훌륭하다고 할 수 있다. 앞으로 화질복원과 이미지 편집 분야에서 해당기술이 활용돼 학계와 산업계에 기여할 수 있을 것으로 기대된다”고 했다

이번 연구성과는 한국연구재단(NRF), 정보통신기획평가원(IITP)과 DGIST의 지원을 통해 이뤄졌다. 비전 기술 분야 세계적 권위의 학술지인 ECCV(European Conference on Computer Vision)에 게재됐다.

☞공감언론 뉴시스 nhy@newsis.com

Copyright © 뉴시스. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?