KAIST, AI 추천시스템에 활용 가능 '그래프 신경망' 기술 개발

김영준 2022. 10. 25. 18:14
자동요약 기사 제목과 주요 문장을 기반으로 자동요약한 결과입니다.
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.

한국과학기술원(KAIST·총장 이광형)은 박찬영 산업 및 시스템공학과 교수팀이 데이터의 레이블이 없는 상황에서도 높은 예측 정확도를 달성할 수 있는 새로운 그래프 신경망 모델 훈련 기술을 개발했다고 25일 밝혔다.

레이블이 없는 상황에서 그래프 신경망 모델 훈련은 데이터 증강을 통해 생성된 정점들의 공통된 특성을 학습하는 과정으로 볼 수 있다.

음성재생 설정
번역beta Translated by kaka i
글자크기 설정 파란원을 좌우로 움직이시면 글자크기가 변경 됩니다.

이 글자크기로 변경됩니다.

(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.

연구팀이 제안하는 관계 보존 학습 모델의 구조

한국과학기술원(KAIST·총장 이광형)은 박찬영 산업 및 시스템공학과 교수팀이 데이터의 레이블이 없는 상황에서도 높은 예측 정확도를 달성할 수 있는 새로운 그래프 신경망 모델 훈련 기술을 개발했다고 25일 밝혔다.

레이블이 없는 상황에서 그래프 신경망 모델 훈련은 데이터 증강을 통해 생성된 정점들의 공통된 특성을 학습하는 과정으로 볼 수 있다. 하지만 이러한 정점의 공통된 특성을 학습하는 과정에서, 기존 훈련 방법은 표상 공간에서 자신을 제외한 다른 정점들과의 유사도가 작아지도록 훈련을 한다. 하지만 그래프 데이터가 정점들 사이의 관계를 나타내는 데이터 구조라는 점을 고려했을 때, 이런 일차원적인 방법론은 정점 간의 관계를 정확히 반영하지 못하게 된다.

기존 연구에서는 정점의 레이블이 없는 상황에서 정점에 대한 표상을 훈련하기 위해 표상 공간 내에서 자기 자신을 제외한 다른 정점들과의 유사도가 작아지도록 훈련을 한다. 예를 들어 소셜 네트워크에 A, B, C 라는 사용자가 존재할 때, A, B와 C가 표상 공간에서 서로 간의 유사도가 모두 작아지도록 모델을 훈련하는 것이다. 이때 박 교수팀이 착안한 점은 그래프 데이터가 정점 간의 관계를 나타내는 데이터이므로 정점 간의 관계를 포착하도록 정점의 표상을 훈련할 필요가 있다는 점이었다.

즉 A, B와 C 서로 간의 유사도가 모두 작아지게 하는 훈련 메커니즘과는 달리, 실제 그래프상에서는 이들이 연관이 있을 수 있다는 점이다. 따라서 A, B와 C 사이의 관계를 긍정/부정의 이진 분류를 통해 표상 공간에서 유사도가 작아지도록 훈련을 하는 것이 아닌, 이들의 관계를 정의해 그 관계를 보존하도록 학습하는 모델을 연구팀은 개발했다. 연구팀은 정점 간의 관계를 기반으로 정점의 표상을 훈련함으로써, 기존 연구가 갖는 엄격한 규제들을 완화해 그래프 데이터를 더 유연하게 모델링했다.

연구팀은 이 학습 방법론을 '관계 보존 학습'이라고 명명했으며, 그래프 데이터 분석의 주요 문제(정점 분류, 간선 예측)에 적용했다. 그 결과 최신 연구 방법론과 비교했을 때, 정점 분류 문제에서 최대 3% 예측 정확도를 향상했고, 간선 예측 문제에서 6%의 성능 향상, 다중 연결 네트워크의 정점 분류 문제에서 3%의 성능 향상을 보였다.

박찬영 교수는 “이번 기술은 그래프 데이터상에 레이블이 부재한 상황에서 표상 학습 모델을 훈련하는 기존 모델들의 단점들을 관계 보존이라는 개념을 통해 보완해 새로운 학습 패러다임을 제시하여 학계에 큰 파급효과를 낼 수 있다”고 말했다.

김영준기자 kyj85@etnews.com

Copyright © 전자신문. 무단전재 및 재배포 금지.

이 기사에 대해 어떻게 생각하시나요?