KAIST, 우수 소재 설계 딥러닝 방법론 개발
전체 맥락을 이해하기 위해서는 본문 보기를 권장합니다.
한국과학기술원(KAIST·총장 이광형)은 유승화 기계공학과 교수팀이 능동-전이 학습 (active-transfer learning)과 데이터 증강기법(Data augmentation)에 기반해, 심층신경망 초기 훈련에 쓰인 소재들과 형태와 조합이 매우 다른 우수한 특성을 지닌 소재를 효율적으로 탐색하고 설계하는 방법론을 개발했다고 16일 밝혔다.
연구팀은 이번 연구에서 이를 극복하기 위해 초기 훈련 데이터 영역에서 벗어나 우수한 소재를 효율적으로 탐색할 수 있는 인공신경망 기반 전진 설계 (Forward design) 방법론을 제안했다.
이 글자크기로 변경됩니다.
(예시) 가장 빠른 뉴스가 있고 다양한 정보, 쌍방향 소통이 숨쉬는 다음뉴스를 만나보세요. 다음뉴스는 국내외 주요이슈와 실시간 속보, 문화생활 및 다양한 분야의 뉴스를 입체적으로 전달하고 있습니다.
한국과학기술원(KAIST·총장 이광형)은 유승화 기계공학과 교수팀이 능동-전이 학습 (active-transfer learning)과 데이터 증강기법(Data augmentation)에 기반해, 심층신경망 초기 훈련에 쓰인 소재들과 형태와 조합이 매우 다른 우수한 특성을 지닌 소재를 효율적으로 탐색하고 설계하는 방법론을 개발했다고 16일 밝혔다.
인공신경망에 기반해 방대한 설계 공간에서 새로운 소재를 찾기 위한 역설계 연구는 최근 매우 활발하게 진행되고 있다. 하지만 이러한 기존 설계 방식은 목표로 하는 소재의 형태와 조합이 심층신경망 훈련에 활용된 소재들과 매우 다를 때 인공신경망이 가지는 낮은 예측능력으로 인해 극히 많은 수의 소재 데이터 검증이 요구되며, 이에 따라 제한적으로만 활용이 가능하다.
연구팀은 이번 연구에서 이를 극복하기 위해 초기 훈련 데이터 영역에서 벗어나 우수한 소재를 효율적으로 탐색할 수 있는 인공신경망 기반 전진 설계 (Forward design) 방법론을 제안했다.
이 방법론은 유전 알고리즘과 결합된 능동-전이 학습 및 데이터 증강기법을 통해 심층신경망을 점진적으로 업데이트함으로써, 초기 훈련데이터를 벗어난 영역에서 심층신경망의 낮은 예측능력을 적은 숫자의 데이터 검증 및 추가로 보완한다.
유전 알고리즘에 의해 제안되는 우수 소재 후보군은 기보유한 소재 데이터를 조합해 도출하기 때문에 심층신경망의 신뢰할 수 있는 예측 영역과 설계 공간 측면에서 상대적으로 가까워 예측정확도가 유지된다. 이 후보군과 능동-전이 학습을 활용해 점진적으로 심층신경망의 신뢰성 있는 예측 범위를 확장하면, 초기 훈련데이터 영역 밖에서도 적은 데이터를 생성해 효율적인 설계 과정이 가능하다.
연구진은 개발한 방법론이 큰 설계 공간을 다루는 다양한 분야의 최적화 문제에 적용할 수 있을 것으로 기대되며, 특히 설계에 요구되는 데이터 검증의 숫자가 적기 때문에 데이터 생성에 시간이 오래 걸리고 비용이 많이 드는 설계 문제에서 이 방법론이 크게 활용될 수 있을 것으로 기대된다고 설명했다.
대전=김영준기자 kyj85@etnews.com
Copyright © 전자신문. 무단전재 및 재배포 금지.
- [단독]제네시스 전기차에 삼성 이미지센서 탑재
- '신용카드' 꺼내는 토스뱅크…'결제 데이터' 주목
- "낡은 규제 없애고 '혁신강국' 실현"…혁신거래소 설립 제안
- "17분만에 완충"...샤오미, 11T 시리즈 공개
- 디즈니플러스, LG U+ 'IPTV+모바일'·KT '모바일' 제휴
- '한국메타버스산업협회' 내달 출범…"민관 소통 강화"
- 브랜든 카 FCC 상임위원 "구글·페북 디지털광고수익에 7% 보편기금 부과 가능"
- LG유플러스, 'U+스마트팩토리' 솔루션 매출 7배 성장 목표
- 배재대 식품영양학과, '푸드테크AI융합전공' 신설...푸드테크 인재양성
- '과학기술·IT대사' 생긴다…후보에 민원기 전 과기부 차관 유력